Description: Neuromechanical Modeling of Posture and Locomotion by Boris I. Prilutsky, Donald H. Edwards Neuromechanical Modeling of Posture and Locomotion FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description Neuromechanics is a new, quickly growing field of neuroscience research that merges neurophysiology, biomechanics and motor control and aims at understanding living systems and their elements through interactions between their neural and mechanical dynamic properties. Although research in Neuromechanics is not limited by computational approaches, neuromechanical modeling is a powerful tool that allows for integration of massive knowledge gained in the past several decades in organization of motion related brain and spinal cord activity, various body sensors and reflex pathways, muscle mechanical and physiological properties and detailed quantitative morphology of musculoskeletal systems. Recent work in neuromechanical modeling has demonstrated advantages of such an integrative approach and led to discoveries of new emergent properties of neuromechanical systems. Neuromechanical Modeling of Posture and Locomotion will cover a wide range of topics from theoretical studies linking the organization of reflex pathways and central pattern generating circuits with morphology and mechanics of the musculoskeletal system (Burkholder; Nichols; Shevtsova et al.) to detailed neuromechanical models of postural and locomotor control (Bunderson; Edwards, Marking et al., Ting). Furthermore, uniquely diverse modeling approaches will be presented in the book including a theoretical dynamic analysis of locomotor phase transitions (Spardy and Rubin), a hybrid computational modeling that allows for in vivo interactions between parts of a living organism and a computer model (Edwards et al.), a physical neuromechanical model of the human locomotor system (Lewis), and others. Back Cover For over a century, research has yielded enormous amounts of quantitative information about animal motor systems. Yet our understanding of neural control mechanisms of animal balance and locomotion remains cursory and fragmented. This book aims to change that. This is the first book on neuromechanical modeling, a tool that integrates the massive body of knowledge in computational models and complex motor behaviors to reveal the mechanisms by which these behaviors emerge. The majority of research groups working in this area have contributed chapters to this book. The book covers a wide range of topics from theoretical studies linking the organization of spinal reflex pathways and central pattern generating circuits with morphology and mechanics of the musculoskeletal system, to detailed neuromechanical models of balance and locomotor control, to analyses of nonlinear transformations of neural signals by the musculoskeletal system. This book can be used as an introductory guide to this new and exciting area of computational neuroscience research. Author Biography Boris Prilutsky received his BS degrees in physical education and applied mathematics/ mechanics from Central Institute of Physical Culture in Moscow, Russia and Moscow Institute of Electronic Engineering, respectively, and a PhD in animal movement biomechanics and physiology from Latvian Research Institute of Traumatology and Orthopedics. He is currently an associate professor in the School of Applied Physiology and director of Biomechanics and Motor Control laboratory at the Georgia Institute of Technology and an adjunct associate professor in the Division of Physical Therapy at Emory University School of Medicine. His research interests are biomechanics and neural control of normal and pathological movement. Donald H. Edwards received a B.S. degree in electrical engineering from the Massachusetts Institute of Technology and a Ph.D. in neurobiology from Yale University. He studied sensori-motor integration as a postdoctoral research associate with Donald Kennedyat Stanford University and with Brian Mulloney at University of California, Davis. He joined the faculty at Georgia State University as Assistant Professor of Biology and is currently Regents Professor of Neuroscience. His research interests include sensori-motor integration, neuromechanics and the neural control of behavior. Table of Contents Preface.- Better science through predictive modeling: Numerical tools for understanding neuromechanical interactions.- A neuromechanical model of spinal control of locomotion.- Neural regulation of limb mechanics: Insights from the organization of proprioceptive circuits.- Model-based approaches to understanding musculoskeletal filtering of neural signals.- Modeling the organization of spinal cord neural circuits controlling two-joint muscles.- Muscles: non-linear transformers of motor neuron activity.- Why is neuromechanical modeling of balance and locomotion so hard?.- Neuromusculoskeletal modeling for the adaptive control of posture during locomotion.- Model-based interpretations of experimental data related to the control of balance during stance and gait in humans.- Computing motion dependent afferent activity during cat locomotion using a forward dynamics musculoskeletal model.- Modeling and optimality analysis of pectoral fin locomotion.- Control of cat walking and paw-shakeby a multifunctional central pattern generator. Review "This is a desk reference, text, and atlas on the Biomechanics, Kinesiology, Bioengineering, and Neurophysiology of Posture Control and locomotion of animals, humans, cats, and sting rays. … This is a very high quality monograph on computational neurosciences. The book will benefit researchers, neurophysiologists, neurologists, and kinesiologists." (Joseph Grenier, Amazon.com, April, 2018) Review Quote "This is a desk reference, text, and atlas on the Biomechanics, Kinesiology, Bioengineering, and Neurophysiology of Posture Control and locomotion of animals, humans, cats, and sting rays. ... This is a very high quality monograph on computational neurosciences. The book will benefit researchers, neurophysiologists, neurologists, and kinesiologists." (Joseph Grenier, Amazon.com, April, 2018) Feature The first book on the topic of neuromechanics in general and on neuromechanical modeling of posture and locomotion specifically Presents uniquely diverse modeling approaches Covers a range of topics from theoretical studies to detailed neuromechanical models Details ISBN1493932667 Series Springer Series in Computational Neuroscience Language English ISBN-10 1493932667 ISBN-13 9781493932665 Media Book Format Hardcover Year 2015 Short Title NEUROMECHANICAL MODELING OF PO Pages 368 Imprint Springer-Verlag New York Inc. Place of Publication New York Country of Publication United States Edited by Donald H. Edwards Birth 1979 Publication Date 2015-12-30 Edition 1st DOI 10.1007/978-1-4939-3267-2 AU Release Date 2015-12-30 NZ Release Date 2015-12-30 US Release Date 2015-12-30 UK Release Date 2015-12-30 Author Donald H. Edwards Affiliation Harvard University Position Graduate Student Qualifications M.D. Publisher Springer-Verlag New York Inc. Edition Description 1st ed. 2016 Alternative 9781493980086 DEWEY 612.8 Audience Professional & Vocational Illustrations 52 Illustrations, color; 64 Illustrations, black and white; XI, 368 p. 116 illus., 52 illus. in color. We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:96919598;
Price: 330.94 AUD
Location: Melbourne
End Time: 2025-01-14T17:55:38.000Z
Shipping Cost: 94.82 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9781493932665
Book Title: Neuromechanical Modeling of Posture and Locomotion
Item Height: 235 mm
Item Width: 155 mm
Author: Donald H. Edwards, Boris I. Prilutsky
Publication Name: Neuromechanical Modeling of Posture and Locomotion
Format: Hardcover
Language: English
Publisher: Springer-Verlag New York Inc.
Subject: Biology, Mathematics
Publication Year: 2015
Type: Textbook
Item Weight: 6919 g
Number of Pages: 368 Pages