La Milano

Multivariable Predictive Control: Applications in Industry by Sandip K. Lahiri (

Description: FREE SHIPPING UK WIDE Multivariable Predictive Control by Sandip K. Lahiri A guide to all practical aspects of building, implementing, managing, and maintaining MPC applications in industrial plants Multivariable Predictive Control: Applications in Industry provides engineers with a thorough understanding of all practical aspects of multivariate predictive control (MPC) applications, as well as expert guidance on how to derive maximum benefit from those systems. Short on theory and long on step-by-step information, it covers everything plant process engineers and control engineers need to know about building, deploying, and managing MPC applications in their companies. MPC has more than proven itself to be one the most important tools for optimising plant operations on an ongoing basis. Companies, worldwide, across a range of industries are successfully using MPC systems to optimise materials and utility consumption, reduce waste, minimise pollution, and maximise production. Unfortunately, due in part to the lack of practical references, plant engineers are often at a loss as to how to manage and maintain MPC systems once the applications have been installed and the consultants and vendors reps have left the plant. Written by a chemical engineer with two decades of experience in operations and technical services at petrochemical companies, this book fills that regrettable gap in the professional literature. Provides a cost-benefit analysis of typical MPC projects and reviews commercially available MPC software packagesDetails software implementation steps, as well as techniques for successfully evaluating and monitoring software performance once it has been installedFeatures case studies and real-world examples from industries, worldwide, illustrating the advantages and common pitfalls of MPC systemsDescribes MPC application failures in an array of companies, exposes the root causes of those failures, and offers proven safeguards and corrective measures for avoiding similar failures Multivariable Predictive Control: Applications in Industry is an indispensable resource for plant process engineers and control engineers working in chemical plants, petrochemical companies, and oil refineries in which MPC systems already are operational, or where MPC implementations are being considering. FORMAT Hardcover LANGUAGE English CONDITION Brand New Back Cover A guide to all practical aspects of building, implementing, managing, and maintaining MPC applications in industrial plants Multivariable Predictive Control: Applications in Industry provides engineers with a thorough understanding of all practical aspects of multivariate predictive control (MPC) applications, as well as expert guidance on how to derive maximum benefit from those systems. Short on theory and long on step-by-step information, it covers everything plant process engineers and control engineers need to know about building, deploying, and managing MPC applications in their companies. MPC has more than proven itself to be one the most important tools for optimising plant operations on an ongoing basis. Companies, worldwide, across a range of industries are successfully using MPC systems to optimise materials and utility consumption, reduce waste, minimise pollution, and maximise production. Unfortunately, due in part to the lack of practical references, plant engineers are often at a loss as to how to manage and maintain MPC systems once the applications have been installed and the consultants and vendors reps have left the plant. Written by a chemical engineer with two decades of experience in operations and technical services at petrochemical companies, this book fills that regrettable gap in the professional literature. Provides a cost-benefit analysis of typical MPC projects and reviews commercially available MPC software packages Details software implementation steps, as well as techniques for successfully evaluating and monitoring software performance once it has been installed Features case studies and real-world examples from industries, worldwide, illustrating the advantages and common pitfalls of MPC systems Describes MPC application failures in an array of companies, exposes the root causes of those failures, and offers proven safeguards and corrective measures for avoiding similar failures Multivariable Predictive Control: Applications in Industry is an indispensable resource for plant process engineers and control engineers working in chemical plants, petrochemical companies, and oil refineries in which MPC systems already are operational, or where MPC implementations are being considering. Flap A guide to all practical aspects of building, implementing, managing, and maintaining MPC applications in industrial plants Multivariable Predictive Control: Applications in Industry provides engineers with a thorough understanding of all practical aspects of multivariate predictive control (MPC) applications, as well as expert guidance on how to derive maximum benefit from those systems. Short on theory and long on step-by-step information, it covers everything plant process engineers and control engineers need to know about building, deploying, and managing MPC applications in their companies. MPC has more than proven itself to be one the most important tools for optimising plant operations on an ongoing basis. Companies, worldwide, across a range of industries are successfully using MPC systems to optimise materials and utility consumption, reduce waste, minimise pollution, and maximise production. Unfortunately, due in part to the lack of practical references, plant engineers are often at a loss as to how to manage and maintain MPC systems once the applications have been installed and the consultants and vendors reps have left the plant. Written by a chemical engineer with two decades of experience in operations and technical services at petrochemical companies, this book fills that regrettable gap in the professional literature. Provides a cost-benefit analysis of typical MPC projects and reviews commercially available MPC software packages Details software implementation steps, as well as techniques for successfully evaluating and monitoring software performance once it has been installed Features case studies and real-world examples from industries, worldwide, illustrating the advantages and common pitfalls of MPC systems Describes MPC application failures in an array of companies, exposes the root causes of those failures, and offers proven safeguards and corrective measures for avoiding similar failures Multivariable Predictive Control: Applications in Industry is an indispensable resource for plant process engineers and control engineers working in chemical plants, petrochemical companies, and oil refineries in which MPC systems already are operational, or where MPC implementations are being considering. Author Biography Sandip Kumar Lahiri, PhD, is a chemical engineer with more than twenty one years of experience in operations and technical services at leading petrochemical industries around the globe. His areas of expertise include simulation, process modelling, artificial intelligence and neural networks in process industry, APC, soft sensor, and slurry flow modelling. Table of Contents Figure List xix Table List xxi Preface xxiii 1 Introduction of Model Predictive Control 1 1.1 Purpose of Process Control in Chemical Process Industries (CPI) 1 1.2 Shortcomings of Simple Regulatory PID Control 2 1.3 What Is Multivariable Model Predictive Control? 3 1.4 Why Is a Multivariable Model Predictive Optimizing Controller Necessary? 4 1.5 Relevance of Multivariable Predictive Control (MPC) in Chemical Process Industry in Todays Business Environment 6 1.6 Position of MPC in Control Hierarchy 6 1.6.1 Regulatory PID Control Layer 6 1.6.2 Advance Regulatory Control (ARC) Layer 8 1.6.3 Multivariable ModelBased Control 8 1.6.4 Economic Optimization Layer 8 1.6.4.1 First Layer of Optimization 8 1.6.4.2 Second Layer of Optimization 9 1.6.4.3 Third Layer of Optimization 9 1.7 Advantage of Implementing MPC 10 1.8 How Does MPC Extract Benefit? 13 1.8.1 MPC Inherent Stabilization Effect 13 1.8.2 Process Interactions 14 1.8.3 Multiple Constraints 15 1.8.4 Intangible Benefits of MPC 17 1.9 Application of MPC in Oil Refinery, Petrochemical, Fertilizer, and Chemical Plants, and Related Benefits 17 2 Theoretical Base of MPC 23 2.1 Why MPC? 23 2.2 Variables Used in MPC 25 2.2.1 Manipulated Variables (MVs) 25 2.2.2 Controlled Variables (CVs) 25 2.2.3 Disturbance Variables (DVs) 25 2.3 Features of MPC 26 2.3.1 MPC Is a Multivariable Controller 26 2.3.2 MPC Is a Model Predictive Controller 26 2.3.3 MPC Is a Constrained Controller 26 2.3.4 MPC Is an Optimizing Controller 27 2.3.5 MPC Is a Rigorous Controller 27 2.4 Brief Introduction to Model Predictive Control Techniques 27 2.4.1 Simplified Dynamic Control Strategy of MPC 28 2.4.2 Step 1: Read Process Input and Output 29 2.4.3 Step 2: Prediction of CVs 30 2.4.3.1 Building Dynamic Process Model 30 2.4.3.2 How MPC Predicts the Future 32 2.4.4 Step 3: Model Reconciliation 33 2.4.5 Step 4: Determine the Size of the Control Process 34 2.4.6 Step 5: Removal of IllConditioned Problems 34 2.4.7 Step 6: Optimum SteadyState Targets 35 2.4.8 Step 7: Develop Detailed Plan of MV Movement 36 3 Historical Development of Different MPC Technology 43 3.1 History of MPC Technology 43 3.1.1 PreEra 43 3.1.1.1 Developer 43 3.1.1.2 Motivation 44 3.1.1.3 Limitations 44 3.1.2 First Generation of MPC (1970–1980) 44 3.1.2.1 Characteristics of FirstGeneration MPC Technology 44 3.1.2.2 IDCOM Algorithm and Its Features 45 3.1.2.3 DMC Algorithm and Its Features 46 3.1.3 SecondGeneration MPC (1980–1985) 46 3.1.4 ThirdGeneration MPC (1985–1990) 47 3.1.4.1 Distinguishing Features of ThirdGeneration MPC Algorithm 48 3.1.4.2 Distinguishing Features of the IDCOMM Algorithm 49 3.1.4.3 Evolution of SMOC 50 3.1.4.4 Distinctive Features of SMOC 50 3.1.5 FourthGeneration MPC (1990–2000) 50 3.1.5.1 Distinctive Features of FourthGeneration MPC 51 3.1.6 FifthGeneration MPC (2000–2015) 51 3.2 Points to Consider While Selecting an MPC 52 4 MPC Implementation Steps 55 4.1 Implementing a MPC Controller 55 4.1.1 Step 1: Preliminary Cost–Benefit Analysis 55 4.1.2 Step 2: Assessment of Base Control Loops 55 4.1.3 Step 3: Functional Design of Controller 56 4.1.4 Step 4: Conduct the Preliminary Plant Test (PreStepping) 57 4.1.5 Step 5: Conduct the Plant Step Test 57 4.1.6 Step 6: Identify a Process Model 57 4.1.7 Step 7: Generate Online Soft Sensors or Virtual Sensors 58 4.1.8 Step 8: Perform Offline Controller Simulation/Tuning 58 4.1.9 Step 9: Commission the Online Controller 58 4.1.10 Step 10: Online MPC Controller Tuning 59 4.1.11 Step 11: Hold Formal Operator Training 59 4.1.12 Step 12: Performance Monitoring of MPC Controller 59 4.1.13 Step 13: Maintain the MPC Controller 60 4.2 Summary of Steps Involved in MPC Projects with Vendor 60 5 Cost–Benefit Analysis of MPC before Implementation 63 5.1 Purpose of Cost–Benefit Analysis of MPC before Implementation 63 5.2 Overview of Cost–Benefit Analysis Procedure 64 5.3 Detailed Benefit Estimation Procedures 65 5.3.1 Initial Screening for Suitability of Process to Implement MPC 65 5.3.2 Process Analysis and Economics Analysis 66 5.3.3 Understand the Constraints 67 5.3.4 Identify Qualitatively Potential Area of Opportunities 67 5.3.4.1 Example 1: Air Separation Plant 68 5.3.4.2 Example 2: Distillation Columns 69 5.3.5 Collect All Relevant Plant and Economic Data (Trends, Records) 69 5.3.6 Calculate the Standard Deviation and Define the Limit 69 5.3.7 Estimate the Stabilizing Effect of MPC and Shift in the Average 70 5.3.7.1 Benefit Estimation: When the Constraint Is Known 71 5.3.7.2 Benefit Estimation: When the Constraint Is Not Well Known or Changing 72 5.3.8 Estimate Change in Key Performance Parameters Such as Yield, Throughput, and Energy Consumption 72 5.3.8.1 Example: Ethylene Oxide Reactor 72 5.3.9 Identify How This Effect Translates to Plant Profit Margin 73 5.3.10 Estimate the Economic Value of the Effect 73 5.4 Case Studies 73 5.4.1 Case Study 1 73 5.4.1.1 Benefit Estimation Procedure 73 5.4.2 Case Study 2 74 5.4.2.1 Benefit Estimation Procedure 74 6 Assessment of Regulatory Base Control Layer in Plants 77 6.1 Failure Mode of Control Loops and Their Remedies 77 6.2 Control Valve Problems 77 6.2.1 Improper Valve Sizing 78 6.2.1.1 How to Detect a Particular Control Valve Sizing Problem 78 6.2.2 Valve Stiction 79 6.2.2.1 What Is Control Valve Stiction? 79 6.2.2.2 How to Detect Control Valve Stiction Online 80 6.2.2.3 Combating Stiction 80 6.2.2.4 Techniques for Combating Stiction Online 80 6.2.3 Valve Hysteresis and Backlash 81 6.3 Sensor Problems 82 6.3.1 Noisy 82 6.3.2 Flatlining 82 6.3.3 Scale/Range 82 6.3.4 Calibration 82 6.3.5 Overfiltered 83 6.4 Controller Problems 83 6.4.1 Poor Tuning and Lack of Maintenance 83 6.4.2 Poor or Missing Feedforward Compensation 83 6.4.3 Inappropriate Control Structure 84 6.5 ProcessRelated Problems 84 6.5.1 Problems of Variable Gain 84 6.5.2 Oscillations 84 6.5.2.1 Variable Valve Gain 85 6.5.2.2 Variable Process Gain 85 6.6 Human Factor 85 6.7 Control Performance Assessment/Monitoring 86 6.7.1 Available Software for Control Performance Monitoring 86 6.7.2 Basic Assessment Procedure 87 6.8 Commonly Used Control System Performance KPIs 87 6.8.1 Traditional Indices 88 6.8.1.1 Peak Overshoot Ratio (POR) 88 6.8.1.2 Decay Rate 88 6.8.1.3 Peak Time and Rise Time 88 6.8.1.4 Settling Time 88 6.8.1.5 Integral of Error Indexes 88 6.8.2 Simple Statistical Indices 88 6.8.2.1 Mean of Control Error (%) 89 6.8.2.2 Standard Deviation of Control Error (%) 89 6.8.2.3 Standard Variation of Control Error (%) 89 6.8.2.4 Standard Deviation of Controller Output (%) 89 6.8.2.5 Skewness of Control Error 89 6.8.2.6 Kurtosis of Control Error 89 6.8.2.7 Ratio of Standard of Control Error and Controller Output 89 6.8.2.8 Maximum Bicoherence 90 6.8.3 Business/Operational Metrics 90 6.8.3.1 Loop Health 90 6.8.3.2 Service Factor 90 6.8.3.3 Key Performance Indicators 90 6.8.3.4 Operational Performance Efficiency Factor 90 6.8.3.5 Overall Loop Performance Index 90 6.8.3.6 Controller Output Changes in Manual 90 6.8.3.7 Mode Changes 90 6.8.3.8 Totalized Valve Reversals and Valve Travel 90 6.8.3.9 Process Model Parameters 90 6.8.4 Advanced Indices 90 6.8.4.1 Harris Index 91 6.8.4.2 Nonlinearity Index 91 6.8.4.3 OscillationDetection Indices 91 6.8.4.4 Disturbance Detection Indices 92 6.8.4.5 Autocorrelation Indices 92 6.9 Tuning for PID Controllers 92 6.9.1 Complications with Tuning PID Controllers 93 6.9.2 Loop Retuning 93 6.9.3 Classical Controller Tuning Algorithms 94 6.9.3.1 Controller Tuning Methods 94 6.9.3.2 ZieglerNichols Tuning Method 94 6.9.3.3 Dahlin (Lambda) Tuning Method 94 6.9.4 Manual Controller Tuning Methods in Absence of Any Software 95 6.9.4.1 PreTuning 95 6.9.4.2 Bring in Baseline Parameters 97 6.9.4.3 Some Like It Simple 97 6.9.4.4 Tuning Cascade Control 98 7 Functional Design of MPC Controllers 101 7.1 What Is Functional Design? 101 7.2 Steps in Functional Design 102 7.2.1 Step 1: Define Process Control Objectives 102 7.2.1.1 Economic Objectives 102 7.2.1.2 Operating Objectives 103 7.2.1.3 Control Objectives 104 7.2.2 Step 2: Identify Process Constraints 104 7.2.2.1 Process Limitations 104 7.2.2.2 Safety Limitations 104 7.2.2.3 Process Instrument Limitations 105 7.2.2.4 Raw Material and Utility Supply Limitation 105 7.2.2.5 Product Limitations 105 7.2.3 Step 3: Define Controller Scope 105 7.2.4 Step 4: Select the Variables 106 7.2.4.1 Economics of the Unit 106 7.2.4.2 Constraints of the Unit 107 7.2.4.3 Control of the Unit 107 7.2.4.4 Manipulated Variables (MVs) 107 7.2.4.5 Controlled Variables (CVs) 107 7.2.4.6 Disturbance Variables (DVs) 108 7.2.4.7 Practical Guidelines for Variable Selections 108 7.2.5 Step 5: Rectify Regulatory Control Issues 109 7.2.5.1 Practical Guidelines for Changing Regulatory Controller Strategy 109 7.2.6 Step 6: Explore the Scope of Inclusions of Inferential Calculations 110 7.2.7 Step 7: Evaluate Potential Optimization Opportunity 110 7.2.7.1 Practical Guidelines for Finding out Optimization Opportunities 111 7.2.8 Step 8: Define LP or QP Objective Function 111 7.2.8.1 CDU Example 112 8 Preliminary Process Test and Step Test 113 8.1 PreStepping, or Preliminary Process Test 113 8.1.1 What Is PreStepping? 113 8.1.2 Objective of PreStepping 113 8.1.3 Prerequisites of PreStepping 113 8.1.4 PreStepping 114 8.2 Step Testing 115 8.2.1 What Is a Step Test? 115 8.2.2 What Is the Purpose of a Step Test? 115 8.2.3 Details of Step Testing 116 8.2.3.1 Administrative Aspects 116 8.2.3.2 Technical Aspects 116 8.2.4 Different StepTesting Method 117 8.2.4.1 Manual Step Testing 117 8.2.4.2 PRBS (Pseudo Random Binary Sequence) 117 8.2.4.3 General Guidelines of PRBS Test 117 8.2.5 Difference between Normal Step Testing and PRBS Testing 118 8.2.6 Which One to Choose? 118 8.2.7 Dos and Donts of Step Testing 118 8.3 Development of StepTesting Methodology over the Years 120 9 Model Building and System Identification 123 9.1 Introduction to Model Building 123 9.2 Key Issues in Model Identifications 124 9.2.1 Identification Test 124 9.2.2 Model Structure and Parameter Estimation 125 9.2.3 Order Selection 126 9.2.4 Model Validation 127 9.3 The Basic Steps of System Identification 127 9.3.1 Step 0: Experimental Design and Execution 128 9.3.2 Step 1: Plan the Case that Needs to Be Modeled 130 9.3.2.1 Action 1 130 9.3.2.2 Action 2 130 9.3.3 Step 2: Identify Good Slices of Data 130 9.3.3.1 Looking at the Data 131 9.3.4 Step 3: PreProcessing of Data 131 9.3.5 Step 4: Identification of Model Curve 132 9.3.5.1 Hybrid Approach to System Identification 132 9.3.5.2 Direct Modeling Approach of System Identification 133 9.3.5.3 Subspace Identification 134 9.3.5.4 Detailed Steps of Implementations 135 9.3.6 Step 5: Select Final Model 136 9.4 Model Structures 137 9.4.1 FIR Models 138 9.4.1.1 FIR Structures 138 9.4.2 Prediction Error Models (PEM Models) 139 9.4.2.1 PEM Structures 139 9.4.3 Model for Order and Variance Reduction 140 9.4.3.1 ARX Parametric Models (Discrete Time) 140 9.4.3.2 Output Error Models (Discrete Time) 140 9.4.3.3 Laplace Domain Parametric Models 141 9.4.3.4 Final Model Form 141 9.4.4 StateSpace Models 141 9.4.5 How to Know Which Structure and Method to Use 142 9.5 Common Features of Commercial Identification Packages 142 10 Soft Sensors 145 10.1 What Is a Soft Sensor? 145 10.2 Why Soft Sensors Are Necessary 145 10.2.1 Process Monitoring and Process Fault Detection 146 10.2.2 Sensor Fault Detection and Reconstruction 146 10.2.3 Use of Soft Sensors in MPC Application 146 10.3 Types of Soft Sensors 147 10.3.1 First PrincipleBased Soft Sensors 147 10.3.1.1 Advantages 147 10.3.1.2 Disadvantages 147 10.3.2 DataDriven Soft Sensors 148 10.3.2.1 Advantages 148 10.3.2.2 Disadvantages 148 10.3.3 Gray ModelBased Soft Sensors 148 10.3.3.1 Advantages 149 10.3.4 Hybrid ModelBased Soft Sensors 149 10.3.4.1 Advantages 149 10.4 Soft Sensors Development Methodology 149 10.4.1 Data Collection and Data Inspection 149 10.4.2 Data Preprocessing and Data Conditioning 150 10.4.2.1 Outlier Detection and Replacement 151 10.4.2.2 Univariate Approach to Detect Outliers 151 10.4.2.3 Multivariate Approach to Detect Outliers (Lin 2007) 151 10.4.2.4 Handling of Missing Data 152 10.4.3 Selection of Relevant Input Output Variables 153 10.4.4 Data Alignment 153 10.4.5 Model Selection, Training, and Validation (Kadlec 2009; Lin 2007) 153 10.4.6 Analyze Process Dynamics 154 10.4.7 Deployment and Maintenance 155 10.5 DataDriven Methods for Soft Sensing 156 10.5.1 Principle Component Analysis 156 10.5.1.1 The Basics of PCA 156 10.5.1.2 Why Do We Need to Rotate the Data? 156 10.5.1.3 How Do We Generate Principal Components? 156 10.5.1.4 Steps to Calculating Principal Components 157 10.5.2 Partial Least Squares 157 10.5.3 Artificial Neural Networks 158 10.5.3.1 Network Architecture 159 10.5.3.2 Back Propagation Algorithm (BPA) 159 10.5.4 NeuroFuzzy Systems 160 10.5.5 Support Vector Machines 161 10.5.5.1 Support Vector Regression–Based Modeling 161 10.6 Open Issues and Future Steps of Soft Sensor Development 162 10.6.1 Large Effort Required for Preprocessing of Industrial Data 162 10.6.2 Which Modeling Method to Choose? 163 10.6.3 Agreement of the Developed Model with Physics of the Process 163 10.6.4 Performance Deterioration of Developed Soft Sensor Model 163 11 Offline Simulation 167 11.1 What Is Offline Simulation? 167 11.2 Purpose of Offline Simulation 167 11.3 Main Task of Offline Simulation 168 11.4 Understanding Different Tuning Parameters of Offline Simulations 168 11.4.1 Tuning Parameters for CVs 169 11.4.1.1 Methods for Handling of Infeasibility 170 11.4.1.2 Priority Ranking of CVs 170 11.4.1.3 cv GiveUp 170 11.4.1.4 cv Error Weight 170 11.4.2 Tuning Parameters for MVs 171 11.4.2.1 mv Maximum Movement Limits or RateofChange Limits 171 11.4.2.2 Movement Weights 171 11.4.3 Tuning Parameters for Optimizer 172 11.4.3.1 Economic Optimization 172 11.4.3.2 General Form of Objective Function 173 11.4.3.3 Weighting Coefficients 173 11.4.3.4 Setting Linear Objective Coefficients 173 11.4.3.5 Optimization Horizon and Optimization Speed Factor 174 11.4.3.6 Optimization Speed Factor 174 11.4.3.7 mv Optimization Priority 174 11.4.4 Soft Limits 175 11.4.4.1 How Soft Limits Work 175 11.4.4.2 cv Soft Limits 175 11.4.4.3 mv Soft Limits 176 11.5 Different Steps to Build and Activate Simulator in an Offline PC 176 11.6 Example of Tests Carried out in Simulator 177 11.6.1 Control and Optimization Objectives 177 11.6.1.1 Test 1 178 11.6.1.2 Test 2 179 11.6.1.3 Test 3 179 11.6.1.4 Test 4 180 11.6.1.5 Test 5 180 11.6.1.6 Test 6 180 11.6.1.7 Others Tests 181 11.7 Guidelines for Choosing Tuning Parameters 181 11.7.1 Guidelines for Choosing Initial Values 181 11.7.2 How to Select Maximum Move Size and MV Movement Weights During Simulation Study 182 12 Online Deployment of MPC Application in Real Plants 183 12.1 What Is Online Deployment (Controller Commissioning)? 183 12.2 Steps for Controller Commissioning 183 12.2.1 Set up the Controller Configuration and Final Review of the Model 183 12.2.2 Build the Controller 184 12.2.3 Load Operator Station on PC Near the Panel Operator 184 12.2.4 Take MPC Controller in Line with Prediction Mode 186 12.2.5 Put the MPC Controller in Close Loop with One CV at a Time 187 12.2.6 Observe MPC Controller Performance 187 12.2.7 Put Optimizer in Line and Observe Optimizer Performance 189 12.2.8 Evaluate Overall Controller Performance 189 12.2.9 Perform Online Tuning and Troubleshooting 190 12.2.10 Train Operators and Engineers on Online Platform 190 12.2.11 Document MPC Features 190 12.2.12 Maintain the MPC Controller 191 13 Online Controller Tuning 193 13.1 What Is Online MPC Controller Tuning? 193 13.2 Basics of Online Tuning 193 13.2.1 Key Checkout Regarding Controller Performance 193 13.2.2 Steps to Troubleshoot the Problem 194 13.3 Guidelines to Choose Different Tuning Parameters 195 14 Why Do Some MPC Applications Fail? 199 14.1 What Went Wrong? 199 14.2 Failure to Build Efficient MPC Application 201 14.2.1 Historical Perspective 201 14.2.2 Capability of MPC Software to Capture Benefits 202 14.2.3 Expertise of Implementation Team 202 14.2.3.1 MPC Vendor Limitations 203 14.2.3.2 Client Limitations 204 14.2.4 Reliability of APC Project Methodology 204 14.3 Contributing Failure Factors of Postimplementation MPC Application 205 14.3.1 Technical Failure Factors 206 14.3.1.1 Lack of Performance Monitoring of MPC Application 206 14.3.1.2 Unresolved Basic Control Problems 206 14.3.1.3 Poor Tuning and Degraded Model Quality 207 14.3.1.4 Problems Related to Controller Design 207 14.3.1.5 Significant Process Modifications and Enhancement 207 14.3.2 Nontechnical Failure Factors 208 14.3.2.1 Lack of Properly Trained Personnel 208 14.3.2.2 Lack of Standards and Guidelines to MPC Support Personnel 208 14.3.2.3 Lack of Organizational Collaboration and Alignment 208 14.3.2.4 Poor Management of Control System 209 14.4 Strategies to Avoid MPC Failures 210 14.4.1 Technical Solutions 211 14.4.1.1 Development of Online Performance Monitoring of APC Applications 211 14.4.1.2 Improvement of Base Control Layer 212 14.4.1.3 Tuning Basic Controls 212 14.4.1.4 Control Performance Monitoring Software 213 14.4.2 Management Solutions 214 14.4.2.1 Training of MPC Console Operators 214 14.4.2.2 Training of MPC Control Engineers 215 14.4.2.3 Development of Corporate MPC Standards and Guidelines 216 14.4.2.4 Central Engineering Support Organization for MPC 217 14.4.3 Outsourcing Solutions 219 15 MPC Performance Monitoring 221 15.1 Why Performance Assessment of MPC Application Is Necessary 221 15.2 Types of Performance Assessment 222 15.2.1 Control Performance 222 15.2.2 Optimization Performance 222 15.2.3 Economic Performance 222 15.2.4 Intangible Performance 222 15.3 Benefit Measurement after MPC Implementation 222 15.4 Parameters to Be Monitored for MPC Performance Evaluation 223 15.4.1 Service Factors 224 15.4.2 KPI for Financial Criteria 224 15.4.3 KPI for Standard Deviation of Key Process Variable 225 15.4.3.1 Safety Parameters 225 15.4.3.2 Quality Giveaway Parameters 225 15.4.3.3 Economic Parameters 225 15.4.4 KPI for Constraint Activity 226 15.4.5 KPI for Constraint Violation 226 15.4.6 KPI for Inferential Model Monitoring 226 15.4.7 Model Quality 226 15.4.8 Limit Change Frequencies for CV/MVs 227 15.4.9 Active MV Limit 227 15.4.10 LongTerm Performance Monitoring of MPC 227 15.5 KPIs to Troubleshoot Poor Performance of Multivariable Controls 228 15.5.1 Supporting KPIs for Low Service Factor 228 15.5.2 KPIs to Troubleshoot Cycling 229 15.5.3 KPIs for Oscillation Detection 230 15.5.4 KPIs for Regulatory Control Issues 230 15.5.5 KPIs for Measuring Operator Actions 231 15.5.6 KPIs for Measuring Process Changes and Disturbances 231 15.6 Exploitation of Constraints Handling and Maximization of MPC Benefit 231 16 Commercial MPC Vendors and Applications 235 16.1 Basic Modules and Components of Commercial MPC Software 235 16.1.1 Basic MPC Package 235 16.1.2 Data Collection Module 236 16.1.3 MPC Online Controller 236 16.1.4 Operator/ Engineer Station 237 16.1.5 System Identification Module 237 16.1.5.1 Different Modeling Options 239 16.1.5.2 Reporting and Documentation Function 239 16.1.5.3 Data Analysis and PreProcessing 239 16.1.6 PCBased Offline Simulation Package 240 16.1.7 Control Performance Monitoring and Diagnostics Software 240 16.1.7.1 Control Performance Monitoring 240 16.1.7.2 Basic Features of Performance Monitoring and Diagnostics Software 240 16.1.7.3 Performance and Benefits Metrics 241 16.1.7.4 Offline Module 241 16.1.7.5 Online Package 241 16.1.7.6 Online Reports 241 16.1.8 Soft Sensor Module (Also Called Quality Estimator Module) 242 16.1.8.1 Soft Sensor Offline Package 242 16.1.8.2 Soft Sensor Online Package 243 16.1.8.3 Soft Sensor Module Simulation Tool 243 16.2 Major Commercial MPC Software 243 16.3 AspenTech and DMCplus 244 16.3.1 Brief History of Development 244 16.3.1.1 Enhancement of DMC Technology to QDMC Technology in 1983, Regarded as SecondGeneration of MPC Technology (1980–1985) 244 16.3.1.2 Introduction of AspenTech and Evolvement of ThirdGeneration MPC Technology (1985–1990) 245 16.3.1.3 Appearance of DMCplus Product with FourthGeneration MPC Technology (1990–2000) 245 16.3.1.4 Improvement of DMCplus Technology for Quicker Implementation in Shop Floor, Regarded as FifthGeneration MPC (2000–2015) 245 16.3.2 DMCplus Product Package 246 16.3.2.1 Aspen DMCplus Desktop 246 16.3.2.2 Aspen DMCplus Online 246 16.3.2.3 DMCplus Models and Identification Package 247 16.3.2.4 Aspen IQ (Soft Sensor Software) 247 16.3.2.5 Aspen Watch: AspenTech MPC Monitoring and Diagnostic Software 247 16.3.3 Distinctive Features of DMCplus Software Package 248 16.3.3.1 Automating Best Practices in Process Unit Step Testing 248 16.3.3.2 Adaptive Modeling 248 16.3.3.3 New Innovation 249 16.3.3.4 Background Step Testing 250 16.4 RMPCT by Honeywell 251 16.4.1 Brief History of Development 251 16.4.2 Honeywell MPC Product Package and Its Special Features 251 16.4.3 Key Features and Functions of RMPCT 251 16.4.3.1 Special Feature to Handle Model Error 251 16.4.3.2 Coping with Model Error 252 16.4.3.3 Funnels 252 16.4.3.4 Range Control Algorithm 252 16.4.4 Product Value Optimization Capabilities 252 16.4.5 "OneKnob" Tuning 253 16.5 SMOC–Shell Global Solution 253 16.5.1 Evolution of Advance Process Control in Shell 253 16.5.1.1 1975–1998: The Beginnings 253 16.5.1.2 1998–2008: Shell Global Solution and Partnering with Yokogawa Era 254 16.5.1.3 2008 Onward: Shell Returns to Its Own Application 254 16.5.2 Shell MPC Product Package and Its Special Features 255 16.5.2.1 Key Characteristics of SMOC 255 16.5.2.2 Applications 255 16.5.3 SMOC Integrated Software Modules 255 16.5.3.1 AIDA Pro Offline Modeling Package 256 16.5.3.2 md Pro 256 16.5.3.3 RQE Pro 256 16.5.3.4 SMOC Pro 257 16.5.4 SMOC Claim of Superior Distinctive Features 259 16.5.4.1 Integrated Dynamic Modeling Tools and Automatic Step Tests 259 16.5.4.2 StateoftheArt Online Commissioning Tools 259 16.5.4.3 Online Tuning 259 16.5.4.4 Advance Regulatory Controls 260 16.5.4.5 Features of New Product 260 16.6 Conclusion 261 Index 263 Long Description A guide to all practical aspects of building, implementing, managing, and maintaining MPC applications in industrial plants Multivariable Predictive Control: Applications in Industry provides engineers with a thorough understanding of all practical aspects of multivariate predictive control (MPC) applications, as well as expert guidance on how to derive maximum benefit from those systems. Short on theory and long on step-by-step information, it covers everything plant process engineers and control engineers need to know about building, deploying, and managing MPC applications in their companies. MPC has more than proven itself to be one the most important tools for optimising plant operations on an ongoing basis. Companies, worldwide, across a range of industries are successfully using MPC systems to optimise materials and utility consumption, reduce waste, minimise pollution, and maximise production. Unfortunately, due in part to the lack of practical references, plant engineers are often at a loss as to how to manage and maintain MPC systems once the applications have been installed and the consultants and vendors reps have left the plant. Written by a chemical engineer with two decades of experience in operations and technical services at petrochemical companies, this book fills that regrettable gap in the professional literature. Provides a cost-benefit analysis of typical MPC projects and reviews commercially available MPC software packages Details software implementation steps, as well as techniques for successfully evaluating and monitoring software performance once it has been installed Features case studies and real-world examples from industries, worldwide, illustrating the advantages and common pitfalls of MPC systems Describes MPC application failures in an array of companies, exposes the root causes of those failures, and offers proven safeguards and corrective measures for avoiding similar failures Multivariable Predictive Control: Applications in Industry is an indispensable resource for plant process engineers and control engineers working in chemical plants, petrochemical companies, and oil refineries in which MPC systems already are operational, or where MPC implementations are being considering. Details ISBN1119243602 Year 2017 ISBN-10 1119243602 ISBN-13 9781119243601 Format Hardcover Media Book Pages 304 Subtitle Applications in Industry Country of Publication United States DEWEY 629.8 Publication Date 2017-10-06 Short Title Multivariable Predictive Control Language English UK Release Date 2017-10-06 AU Release Date 2017-10-06 NZ Release Date 2017-10-06 US Release Date 2017-10-06 Author Sandip K. Lahiri Publisher John Wiley & Sons Inc Imprint John Wiley & Sons Inc Place of Publication New York Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! 30 DAY RETURN POLICY No questions asked, 30 day returns! FREE DELIVERY No matter where you are in the UK, delivery is free. SECURE PAYMENT Peace of mind by paying through PayPal and eBay Buyer Protection TheNile_Item_ID:136202471;

Price: 186.99 GBP

Location: London

End Time: 2025-01-25T03:27:14.000Z

Shipping Cost: 4.37 GBP

Product Images

Multivariable Predictive Control: Applications in Industry by Sandip K. Lahiri (

Item Specifics

Return postage will be paid by: Buyer

Returns Accepted: Returns Accepted

After receiving the item, your buyer should cancel the purchase within: 30 days

Return policy details:

ISBN-13: 9781119243601

Book Title: Multivariable Predictive Control

Number of Pages: 304 Pages

Publication Name: Multivariable Predictive Control: Applications in Industry

Language: English

Publisher: John Wiley & Sons AND Sons LTD

Item Height: 250 mm

Subject: Engineering & Technology

Publication Year: 2017

Type: Textbook

Item Weight: 620 g

Subject Area: Mechanical Engineering, Chemical Engineering

Author: Sandip K. Lahiri

Item Width: 171 mm

Format: Hardcover

Recommended

Multivariable Mathematics - Paperback, by Williamson Richard; Trotter - Good
Multivariable Mathematics - Paperback, by Williamson Richard; Trotter - Good

$52.73

View Details
Multivariable Mathematics (3rd Edition)
Multivariable Mathematics (3rd Edition)

$38.54

View Details
Multivariable Control Systems
Multivariable Control Systems

$64.95

View Details
Multivariable Mathematics by Williamson, Richard, Trotter, Hale
Multivariable Mathematics by Williamson, Richard, Trotter, Hale

$150.00

View Details
Understanding Multivariable Calculu..., Bruce H. Edward
Understanding Multivariable Calculu..., Bruce H. Edward

$32.99

View Details
Multivariable Mathematics
Multivariable Mathematics

$56.14

View Details
Multivariable Paperback
Multivariable Paperback

$6.96

View Details
MULTIVARIABLE MATHEMATICS (3RD EDITION) By Richard E. Williamson & Hale F. VG
MULTIVARIABLE MATHEMATICS (3RD EDITION) By Richard E. Williamson & Hale F. VG

$56.75

View Details
Multivariable Paperback
Multivariable Paperback

$6.17

View Details
Multivar Calc W/Cds 6e (Stewart's Calculus ..., STEWART
Multivar Calc W/Cds 6e (Stewart's Calculus ..., STEWART

$7.69

View Details