Description: Memetic Computation : The Mainspring of Knowledge Transfer in the Data-driven Optimization Era, Hardcover by Gupta, Abhishek; Ong, Yew-soon, ISBN 3030027287, ISBN-13 9783030027285, Like New Used, Free shipping in the US
This book bridges the widening gap between two crucial constituents of computational intelligence: the rapidly advancing technologies of machine learning in the information age, and the relatively slow-moving field of general-purpose search and optimization algorithms. With this in mind, th serves to offer a data-driven view of optimization, through the framework of memetic computation (MC). The authors provide a summary of the complete timeline of research activities in MC – beginning with the initiation of memes as local search heuristics hybridized with evolutionary algorithms, to their modern interpretation as computationally encoded building blocks of problem-solving knowledge that can be learned from one task and adaptively transmitted to another. In the light of recent research advances, the authors emphasize the further development of MC as a simultaneous problem learning and optimization paradigm with the potential to showcase human-like problem-solving prowess; that is, by equipping optimization engines to acquire increasing levels of intelligence over time through embedded memes learned independently or via interactions. In other words, the adaptive utilization of available knowledge memes makes it possible for optimization engines to tailor custom search behaviors on the fly – thereby paving the way to general-purpose problem-solving ability (or artificial general intelligence). In this regard, th explores some of the latest concepts from the optimization literature, including, the sequential transfer of knowledge across problems, multitasking, and large-scale (high dimensional) search, systematically discussing associated algorithmic developments that align with the general theme of memetics.
The presented ideas are intended to be accessible to a wide audience of scientific researchers, engineers, students, and optimization practitioners who are familiar with the commonly used terminologies of evolutionary computation. A full appreciation of the mathematical formalizations and algorithmic contributions requires an elementary background in probability, statistics, and the concepts of machine learning. A prior knowledge of surrogate-assisted/Bayesian optimization techniques is useful, but not essential.
Price: 176.1 USD
Location: Jessup, Maryland
End Time: 2024-11-16T23:11:58.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 14 Days
Refund will be given as: Money Back
Book Title: Memetic Computation : The Mainspring of Knowledge Transfer in the
Number of Pages: Xi, 104 Pages
Language: English
Publication Name: Memetic Computation : the Mainspring of Knowledge Transfer in the Data-Driven Optimization Era
Publisher: Springer International Publishing A&G
Publication Year: 2019
Subject: Engineering (General), Intelligence (Ai) & Semantics, Neural Networks, Optimization
Item Weight: 16 Oz
Type: Textbook
Item Length: 9.3 in
Subject Area: Mathematics, Computers, Technology & Engineering
Author: Yew Soon Ong, Abhishek Gupta
Series: Adaptation, Learning, and Optimization Ser.
Item Width: 6.1 in
Format: Hardcover