La Milano

Mathematical Modeling in Science and Engineering: An Axiomatic Approach by Ismae

Description: Mathematical Modeling in Science and Engineering by Ismael Herrera, George F. Pinder This text examines the axiomatic approach, a powerful, unified approach to mathematical and computational modeling in science and engineering. Readers will discover that this axiomatic approach enables them to both systematically construct effective models, and also apply these models to any macroscopic physical system. FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems. Back Cover A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems. Flap A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems. Author Biography ISMAEL HERRERA, PhD. in Applied Mathematics, Brown University, is Distinguished Professor in the Natural Resources Department of the Geophysics Institute at the Universidad Nacional Autónoma de México. He is the Editor of Numerical Methods for Partial Differential Equations and President of the Mexican Society of Numerical Methods in Engineering and Applied Sciences. Dr. Herrera has received the National Science, Mexican Academy of Sciences, and Luis Elizondo Awards, the three most prestigious awards in Mexico granted for scientific achievement. GEORGE F. PINDER, PhD, has a primary appointment as Professor of Engineering with secondary appointments as Professor of Mathematics and Statistics and Professor of Computer Science at the University of Vermont. He is the author, or co-author, of nine books on mathematical modeling, numerical mathematics, and flow and transport through porous media. He is a recipient of numerous national and international honors and is a member of the National Academy of Engineering. Table of Contents Preface xiii 1 AXIOMATIC FORMULATION OF THE BASIC MODELS 1 1.1 Models 1 1.2 Microscopic and macroscopic physics 2 1.3 Kinematics of continuous systems 3 1.3.1 Intensive properties 6 1.3.2 Extensive properties 8 1.4 Balance equations of extensive and intensive properties 9 1.4.1 Global balance equations 9 1.4.2 The local balance equations 10 1.4.3 The role of balance conditions in the modeling of continuous systems 13 1.4.4 Formulation of motion restrictions by means of balance equations 14 1.5 Summary 16 2 MECHANICS OF CLASSICAL CONTINUOUS SYSTEMS 23 2.1 One-phase systems 23 2.2 The basic mathematical model of one-phase systems 24 2.3 The extensive/intensive properties of classical mechanics 25 2.4 Mass conservation 26 2.5 Linear momentum balance 27 2.6 Angular momentum balance 29 2.7 Energy concepts 32 2.8 The balance of kinetic energy 33 2.9 The balance of internal energy 34 2.10 Heat equivalent of mechanical work 35 2.11 Summary of basic equations for solid and fluid mechanics 35 2.12 Some basic concepts of thermodynamics 36 2.12.1 Heat transport 36 2.13 Summary 38 3 MECHANICS OF NON-CLASSICAL CONTINUOUS SYSTEMS 45 3.1 Multiphase systems 45 3.2 The basic mathematical model of multiphase systems 46 3.3 Solute transport in a free fluid 47 3.4 Transport by fluids in porous media 49 3.5 Flow of fluids through porous media 51 3.6 Petroleum reservoirs: the black-oil model 52 3.6.1 Assumptions of the black-oil model 53 3.6.2 Notation 53 3.6.3 Family of extensive properties 54 3.6.4 Differential equations and jump conditions 55 3.7 Summary 57 4 SOLUTE TRANSPORT BY A FREE FLUID 63 4.1 The general equation of solute transport by a free fluid 64 4.2 Transport processes 65 4.2.1 Advection 65 4.2.2 Diffusion processes 65 4.3 Mass generation processes 66 4.4 Differential equations of diffusive transport 67 4.5 Well-posed problems for diffusive transport 69 4.5.1 Time-dependent problems 70 4.5.2 Steady state 71 4.6 First-order irreversible processes 71 4.7 Differential equations of non-diffusive transport 73 4.8 Well-posed problems for non-diffusive transport 73 4.8.1 Well-posed problems in one spatial dimension 74 4.8.2 Well-posed problems in several spatial dimensions 79 4.8.3 Well-posed problems for steady-state models 80 4.9 Summary 80 5 FLOW OF A FLUID IN A POROUS MEDIUM 85 5.1 Basic assumptions of the flow model 85 5.2 The basic model for the flow of a fluid through a porous medium 86 5.3 Modeling the elasticity and compressibility 87 5.3.1 Fluid compressibility 87 5.3.2 Pore compressibility 88 5.3.3 The storage coefficient 90 5.4 Darcys law 90 5.5 Piezometric level 92 5.6 General equation governing flow through a porous medium 94 5.6.1 Special forms of the governing differential equation 95 5.7 Applications of the jump conditions 96 5.8 Well-posed problems 96 5.8.1 Steady-state models 97 5.8.2 Time-dependent problems 99 5.9 Models with a reduced number of spatial dimensions 99 5.9.1 Theoretical derivation of a 2-D model for a confined aquifer 100 5.9.2 Leaky aquitard method 102 5.9.3 The integrodifferential equations approach 104 5.9.4 Other 2-D aquifer models 108 5.10 Summary 111 6 SOLUTE TRANSPORT IN A POROUS MEDIUM 117 6.1 Transport processes 118 6.1.1 Advection 118 6.2 Non-conservative processes 118 6.2.1 First-order irreversible processes 119 6.2.2 Adsorption 119 6.3 Dispersion-diffusion 121 6.4 The equations for transport of solutes in porous media 123 6.5 Well-posed problems 125 6.6 Summary 125 7 MULTIPHASE SYSTEMS 129 7.1 Basic model for the flow of multiple-species transport in a multiple-fluid- phase porous medium 129 7.2 Modeling the transport of species i in phase a 130 7.3 The saturated flow case 133 7.4 The air-water system 137 7.5 The immobile air unsaturated flow model 142 7.6 Boundary conditions 143 7.7 Summary 145 8 ENHANCED OIL RECOVERY 149 8.1 Background on oil production and reservoir modeling 149 8.2 Processes to be modeled 151 8.3 Unified formulation of EOR models 151 8.4 The black-oil model 152 8.5 The Compositional Model 156 8.6 Summary 160 9 LINEAR ELASTICITY 165 9.1 Introduction 165 9.2 Elastic Solids 166 9.3 The Linear Elastic Solid 167 9.4 More on the Displacement Field Decomposition 170 9.5 Strain Analysis 171 9.6 Stress Analysis 173 9.7 Isotropic materials 175 9.8 Stress-strain relations for isotropic materials 177 9.9 The governing differential equations 179 9.9.1 Elastodynamics 180 9.9.2 Elastostatics 180 9.10 Well-posed problems 181 9.10.1 Elastostatics 181 9.10.2 Elastodynamics 181 9.11 Representation of solutions for isotropic elastic solids 182 9.12 Summary 183 10 FLUID MECHANICS 189 10.1 Introduction 189 10.2 Newtonian fluids: Stokes constitutive equations 190 10.3 Navier-Stokes equations 192 10.4 Complementary constitutive equations 193 10.5 The concepts of incompressible and inviscid fluids 193 10.6 Incompressible fluids 194 10.7 Initial and boundary conditions 195 10.8 Viscous incompressible fluids: steady states 196 10.9 Linearized theory of incompressible fluids 196 10.10 Ideal fluids 197 10.11 Irrotational flows 198 10.12 Extension of Bernoullis relations to compressible fluids 199 10.13 Shallow-water theory 200 10.14 Inviscid compressible fluids 202 10.14.1 Small perturbations in a compressible fluid: the theory of sound 203 10.14.2 Initiation of motion 204 10.14.3 Discontinuous models and shock conditions 206 10.15 Summary 208 A: PARTIAL DIFFERENTIAL EQUATIONS 211 A. 1 Classification 211 A.2 Canonical forms 213 A.3 Well-posed problems 213 A.3.1 Boundary-value problems: the elliptic case 214 A.3.2 Initial-boundary-value problems 214 B: SOME RESULTS FROM THE CALCULUS 217 B.l Notation 217 B.2 Generalized Gauss Theorem 218 C: PROOF OF THEOREM 221 D: THE BOUNDARY LAYER INCOMPRESSIBILITY APPROXIMATION 225 E: INDICIAL NOTATION 229 E.l General 229 E.2 Matrix algebra 230 E.3 Applications to differential calculus 232 Index 235 Long Description A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems. Details ISBN1118087577 Publisher John Wiley & Sons Inc Year 2012 ISBN-10 1118087577 ISBN-13 9781118087572 Format Hardcover Imprint John Wiley & Sons Inc Place of Publication New York Country of Publication United States Short Title MATHEMATICAL MODELING IN SCIEN Language English Media Book Pages 264 Illustrations Yes DEWEY 501.51 Subtitle An Axiomatic Approach Edition 1st UK Release Date 2012-03-27 AU Release Date 2012-03-13 NZ Release Date 2012-03-13 Author George F. Pinder Publication Date 2012-03-27 Audience Professional & Vocational US Release Date 2012-03-27 We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:136207097;

Price: 203.1 AUD

Location: Melbourne

End Time: 2024-12-25T06:08:00.000Z

Shipping Cost: 4.2 AUD

Product Images

Mathematical Modeling in Science and Engineering: An Axiomatic Approach by Ismae

Item Specifics

Restocking fee: No

Return shipping will be paid by: Buyer

Returns Accepted: Returns Accepted

Item must be returned within: 30 Days

ISBN-13: 9781118087572

Book Title: Mathematical Modeling in Science and Engineering

Number of Pages: 264 Pages

Language: English

Publication Name: Mathematical Modeling in Science and Engineering: an Axiomatic Approach

Publisher: John Wiley & Sons Inc

Publication Year: 2012

Subject: Mathematics

Item Height: 253 mm

Item Weight: 574 g

Type: Textbook

Author: George F. Pinder, Ismael Herrera

Subject Area: Civil Engineering, Chemical Engineering

Item Width: 176 mm

Format: Hardcover

Recommended

Strategic Investment: Real Options and Games - Hardcover - VERY GOOD
Strategic Investment: Real Options and Games - Hardcover - VERY GOOD

$42.90

View Details
Functions Modeling Change: A Preparation for Calculus, 4th Edition - VERY GOOD
Functions Modeling Change: A Preparation for Calculus, 4th Edition - VERY GOOD

$5.38

View Details
Pick 3 Month By Month Guide Partlycloudy07 Lottery Book
Pick 3 Month By Month Guide Partlycloudy07 Lottery Book

$9.54

View Details
Model Building in Mathematical Programming - Paperback - VERY GOOD
Model Building in Mathematical Programming - Paperback - VERY GOOD

$40.13

View Details
Functions Modeling Change: A Preparation for Calculus
Functions Modeling Change: A Preparation for Calculus

$6.33

View Details
Introducing Multilevel Modeling (Introducing Statistical Met - VERY GOOD
Introducing Multilevel Modeling (Introducing Statistical Met - VERY GOOD

$4.48

View Details
Optimization Modeling With LINDO - Hardcover By Schrage, Linus - GOOD
Optimization Modeling With LINDO - Hardcover By Schrage, Linus - GOOD

$4.49

View Details
Superior Beings: If They Exist, How Would We Know? by Brams
Superior Beings: If They Exist, How Would We Know? by Brams

$7.08

View Details
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data - GOOD
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data - GOOD

$14.97

View Details
The Mathematics of Games of Strategy (Dover Books on Mathematics) - VERY GOOD
The Mathematics of Games of Strategy (Dover Books on Mathematics) - VERY GOOD

$5.37

View Details