Description: High-Field EPR Spectroscopy on Proteins and their Model Systems by Klaus Möbius, Anton Savitsky High-Field EPR Spectroscopy on Proteins and their Model Systems: characterization of Transient Paramagnetic States offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description Understanding the major factors determining the specificity of transmembrane transfer processes in proteins is now a hot topic in molecular bio-science. Advanced electron paramagnetic resonance (EPR) at high magnetic fields is a powerful technique for characterizing the transient states of proteins in action. High-Field EPR Spectroscopy on Proteins and their Model Systems: characterization of Transient Paramagnetic States offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. The books focus is on the use of the technique in conjunction with site-specific mutation strategies and advanced quantum-chemical computation methods to reveal protein structure and dynamics. This yields new insights into biological processes at the atomic and molecular level. The theoretical and instrumental background of high-field EPR is described and examples of paradigmatic protein systems, such as photosynthetic reaction centres, are discussed in the light of recent investigations. Aspects of structure dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields. Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. The book provides an outlook to future developments and references for further reading and is essential reading for postdoctoral scientists, professionals, academics and graduate students working in this field. Back Cover Understanding the major factors determining the specificity of transmembrane transfer processes in proteins is now a hot topic in molecular bio-science. Advanced electron paramagnetic resonance (EPR) at high magnetic fields is a powerful technique for characterizing the transient states of proteins in action. High-Field EPR Spectroscopy on Proteins and their Model Systems: characterization of Transient Paramagnetic States offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. The books focus is on the use of the technique in conjunction with site-specific mutation strategies and advanced quantum-chemical computation methods to reveal protein structure and dynamics. This yields new insights into biological processes at the atomic and molecular level. The theoretical and instrumental background of high-field EPR is described and examples of paradigmatic protein systems, such as photosynthetic reaction centres, are discussed in the light of recent investigations. Aspects of structure dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields. Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. The book provides an outlook to future developments and references for further reading and is essential reading for postdoctoral scientists, professionals, academics and graduate students working in this field. Flap Understanding the major factors determining the specificity of transmembrane transfer processes in proteins is now a hot topic in molecular bio-science. Advanced electron paramagnetic resonance (EPR) at high magnetic fields is a powerful technique for characterizing the transient states of proteins in action. High-Field EPR Spectroscopy on Proteins and their Model Systems: characterization of Transient Paramagnetic States offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. The books focus is on the use of the technique in conjunction with site-specific mutation strategies and advanced quantum-chemical computation methods to reveal protein structure and dynamics. This yields new insights into biological processes at the atomic and molecular level. The theoretical and instrumental background of high-field EPR is described and examples of paradigmatic protein systems, such as photosynthetic reaction centres, are discussed in the light of recent investigations. Aspects of structure dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields. Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. The book provides an outlook to future developments and references for further reading and is essential reading for postdoctoral scientists, professionals, academics and graduate students working in this field. c reaction centres, are discussed in the light of recent investigations. Aspects of structure dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields. Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. The book provides an outlook to future developments and references for further reading and is essential reading for postdoctoral scientists, professionals, academics and graduate students working in this field.fessionals, academics and graduate students working in this field. Author Biography Klaus Mobius has worked in the field of EPR spectroscopy for more than 40 years. During the last 15 years, his research has focussed on high-field EPR and related techniques on biochemical systems. Anton Savitsky has worked in the field of EPR spectroscopy for over a decade. Since 1998, his research has focussed on high-field EPR instrumentation development and application to biochemical systems. Table of Contents Introduction;Principles and illustrative examples of high-field/high-frequency EPR;Instrumentation;Computational;Methods for data interpretation;Conclusions and perspectives;Applications of high-field EPR to topical proteins and their model systems Description for Reader Understanding the major factors determining the specificity of transmembrane transfer processes in proteins is currently a hot topic in molecular bio-science. Advanced electron paramagnetic resonance (EPR) at high magnetic fields is a powerful technique for characterizing the transient states of proteins in action on biologically relevant time scales. This book offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. It focuses on the use of the technique in conjunction with site-specific mutation strategies and advanced quantum-chemical computation methods to reveal protein structure and dynamics. This yields new insights into biological processes at the atomic and molecular level. The theoretical and instrumental background of high-field EPR is described and examples of paradigmatic protein systems, such as photosynthesis, are discussed in the light of recent investigations. Aspects of structure-dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields.Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. Finally, the book provides an outlook to future developments and references for further reading.High-Field EPR Spectroscopy on Proteins in Action is essential reading for scientists, professionals, academics and post graduate students working in this field. Description for Bookstore Understanding the major factors determining the specificity of transmembrane transfer processes in proteins is now a hot topic in molecular bio-science. Advanced electron paramagnetic resonance (EPR) at high magnetic fields is a powerful technique for characterizing the transient states of proteins in action. High-Field EPR Spectroscopy on Proteins and their Model Systems: characterization of Transient Paramagnetic States offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. The books focus is on the use of the technique in conjunction with site-specific mutation strategies and advanced quantum-chemical computation methods to reveal protein structure and dynamics. This yields new insights into biological processes at the atomic and molecular level. The theoretical and instrumental background of high-field EPR is described and examples of paradigmatic protein systems, such as photosynthetic reaction centres, are discussed in the light of recent investigations. Aspects of structure dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields. Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. The book provides an outlook to future developments and references for further reading and is essential reading for postdoctoral scientists, professionals, academics and graduate students working in this field. Details ISBN0854043683 Short Title HIGH-FIELD EPR SPECTROSCOPY ON Publisher Royal Society of Chemistry Language English ISBN-10 0854043683 ISBN-13 9780854043682 Media Book Format Hardcover Imprint Royal Society of Chemistry Subtitle Characterization of Transient Paramagnetic States Place of Publication Cambridge Country of Publication United Kingdom DEWEY 572.6 Pages 392 Illustrations No UK Release Date 2008-12-23 AU Release Date 2008-12-23 NZ Release Date 2008-12-23 Author Anton Savitsky Year 2008 Publication Date 2008-12-23 Alternative 9781847559272 Audience Postgraduate, Research & Scholarly We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:16408523;
Price: 428.68 AUD
Location: Melbourne
End Time: 2025-01-20T02:40:15.000Z
Shipping Cost: 0 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9780854043682
Book Title: High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States
Item Height: 234mm
Item Width: 156mm
Author: Anton Savitsky, Klaus Moebius
Format: Hardcover
Language: English
Topic: Chemistry
Publisher: Royal Society of Chemistry
Publication Year: 2008
Type: Textbook
Item Weight: 724g
Number of Pages: 392 Pages